I’m a data geek 🤓 In fact, I like data so much that I have made it my career! I work with Azure Data and the Microsoft Data Platform, focusing on Data Integration using Azure Data Factory (ADF), Azure Synapse Analytics, and SQL Server Integration Services (SSIS).
In this category, I write technical posts and guides, and share my experiences with certification exams. You can also find a few interviews with Azure and SQL Server experts!
Azure Data posts may cover topics like Azure Data Factory, Azure Synapse Analytics, Azure SQL Databases, and Azure Data Lake Storage. Microsoft Data Platform posts may cover topics like SQL Server, T-SQL, and SQL Server Management Studio (SSMS), and SQL Server Integration Services (SSIS).
In the previous post, we looked at the copy data activity and saw how the source and sink properties changed with the datasets used. In this post, we will take a closer look at some common datasets and their properties.
Let’s start with the source and sink datasets we created in the copy data wizard!
Dataset Names
First, a quick note. If you use the copy data tool, you can change the dataset names by clicking the edit button on the summary page…
In the previous post, we went through Azure Data Factory pipelines in more detail. In this post, we will dig into the copy data activity. How does it work? How do you configure the settings? And how can you optimize performance while keeping costs down?
Copy Data Activity
The copy data activity is the core (*) activity in Azure Data Factory.
(*Cathrine’s opinion 🤓)
You can copy data to and from more than 90 Software-as-a-Service (SaaS) applications (such as Dynamics 365 and Salesforce), on-premises data stores (such as SQL Server and Oracle), and cloud data stores (such as Azure SQL Database and Amazon S3). During copying, you can define and map columns implicitly or explicitly, convert file formats, and even zip and unzip files – all in one task.
In the previous post, we used the Copy Data Tool to copy a file from our demo dataset to our data lake. The Copy Data Tool created all the factory resources for us: pipelines, activities, datasets, and linked services.
In this post, we will go through pipelines in more detail. How do we create and organize them? What are their main properties? Can we edit them without using the graphical user interface?
How do I create pipelines?
So far, we have created a pipeline by using the Copy Data Tool. There are several other ways to create a pipeline.
On the Home page, click on the New → Pipeline dropdown menu, or click on the Orchestrate shortcut tile:
In the previous post, we looked at the different Azure Data Factory components. In this post, we’re going to tie everything together and start making things happen. Woohoo! First, we will get familiar with our demo datasets. Then, we will create our Azure Data Lake Storage Account that we will copy data into. Finally, we will start copying data using the Copy Data Tool.
Demo Datasets
First, let’s get familiar with the demo datasets we will be using. I don’t know about you, but I’m a teeny tiny bit tired of the AdventureWorks demos. (I don’t even own a bike…) WideWorldImporters is at least a little more interesting. (Yay, IT joke mugs and chocolate frogs!) But! Let’s use something that might be a little bit more fun to explore.
In the previous post, we looked at the Azure Data Factory user interface and the four main Azure Data Factory pages. In this post, we will go through the Author page in more detail and look at a few things on the Monitoring page. Let’s look at the different Azure Data Factory components!
Azure Data Factory Components on the Author Page
On the left side of the Author page, you will see your factory resources. In this example, we have already created one pipeline, two datasets, one data flow, and one power query:
Let’s go through each of these Azure Data Factory components and explain what they are and what they do.